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Scale-free energy dissipation and dynamic phase transition in stochastic sandpiles

Bosiljka Tadić*
Jožef Stefan Institute, P.O. Box 3000, 1001 Ljubljana, Slovenia

~Received 17 April 1998; revised manuscript received 18 September 1998!

We study numerically scaling properties of the distribution of cumulative energy dissipated in an avalanche
and the dynamic phase transition in a stochastic directed cellular automaton@B. Tadićand D. Dhar, Phys. Rev.
Lett. 79, 1519 ~1997!# in d5111 dimensions. In the critical steady state occurring for the probability of
toppling p>p!50.705 48, the dissipated energy distribution exhibits scaling behavior with new scaling expo-
nentstE andDE for slope and cut-off energy, respectively, indicating that the sandpile surface is a fractal. In
contrast to avalanche exponents, the energy exponents appear to bep dependent in the regionp!<p,1;
however, the product (tE21)DE remains universal. We estimate the roughness exponent of the transverse
section of the pile asx50.4460.04. Critical exponents characterizing the dynamic phase transition atp! are
obtained by direct simulation and scaling analysis of the survival probability distribution and the average
outflow current. The transition belongs to a new universality class with the critical exponentsn i5g51.22
60.02,b50.5660.02 andn'50.76160.029, with apparent violation of hyperscaling. Generalized hyperscal-
ing relation leads tob1b85(d21)n' , whereb850.19560.012 is the exponent governed by the ultimate
survival probability.@S1063-651X~99!02102-9#

PACS number~s!: 05.45.2a, 05.60.2k
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I. INTRODUCTION

Open driven systems exhibiting self-organized critic
~SOC! states@1# are usually modeled by sandpile-type a
tomata, in which sand grains are added slowly to the sys
and its evolution is monitored in terms of collective san
slides ~avalanches!. With additional complexity due to sto
chastic character of the relaxation rules@2–5#, stochastic cel-
lular automata models have proven useful in understand
certain aspects of granular flow@3–5# in realistic granular
materials and in stochastic biological processes@6#. On the
other hand, sandpile automata models are interesting f
the theoretical point of view since both role of the dynam
conservation law~conservation of the number of grains! and
emergent spatial structures can be easily monitored.

Recently a model with probabilistic toppling and direct
mass flow has been proposed@7#, in which the probability of
toppling p represents a control parameter originating eit
from random variations of sticking properties betwe
grains, or from stochastic external conditions~wetting and
drying properties!. Another realization is related to stochas
processes in biological systems such as random dispersio
particles, which are added from the outside and evacu
from the system only when its response lasts longer tha
fixed time T0 , measured on the internal time scale of t
process. Particles are transferred among communicating
according to probabilistic rules, however, for response tim
shorter thanT0 they are held inside the system. Therefo
each cell contains a certain number of particles, which va
with time. The probabilistic character of the particle trans
between connected cells can be attributed to mechan
which depend on general condition of the system. We c
sider the caseT0[L, whereL is the linear system size.

The relaxation rules of the model ind5111 dimensions

*Electronic address: Bosiljka.Tadic@ijs.si
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are if h( i , j )>hc52 thenwith the probability pthe relax-
ation occurs as follows:

h~ i , j !→h~ i , j !22;h~ i 11,j 6!→h~ i 11,j 6!11. ~1!

Hereh( i , j ) is the dynamic variable, i.e., the height~number
of particles! at site (i , j ), and (i 11,j 6) are neighboring
downstream sites on a two-dimensional square lattice
ented downwards. Due to directed mass transport the dyn
ics of this model is anisotropic leading to self-affine rela
ation clusters ind52 ~see Fig. 1!. Thus the model can also
be viewed as directional lines ind5111 dimensions, in
which the instability can propagate in one spatial dimens
back and forth, whereas the temporal dimension is stric
directed. The system is driven by adding particles from
outside, one at a time at a random position along the fi
~top! row. Only sites that are connected to toppled sites at
previous time step are considered as candidates for topp
Perturbation can then be transferred from an active~toppled!
site to two forward neighbors. Periodic transverse bounda
are assumed and all candidate sites are updated in par
The probabilistic character of the relaxation rules produce
ragged structure of heights.@A transverse section through th
pile is shown in Fig. 1~top!.# Two top particles from the
surfaceh( i , j ) are taken away from the system when t
activesite is on the lower boundary, i.e.,i 5L.

It should be stressed that according to the above re
ation rules transport of grains is independent of the rela
heights of neighboring sites. Therefore, it may occur tha
some sites height difference in the direction of transpor
negative, and thus the system performs work in order
maintain the transport. A nice example of this dynamic ru
was found recently in biological transport processes that
mediated by so called molecular motors@8#. These are pro-
tein molecules that can use excess energy from the chem
reactions in the fuel~adenosine triphosphate! and perform
mechanical work.
1452 ©1999 The American Physical Society
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PRE 59 1453SCALE-FREE ENERGY DISSIPATION AND DYNAMIC . . .
It has been understood@7# that the automaton exhibit
self-organized criticality for the range of values of the co
trol parameterp>p!, where p!5pc

SDP50.705 4853(5) is
the percolation threshold for the site directed percolation@9#
on the square lattice. Due to the dynamic conservation
~conserved number of grains in the interior of the pile! and
the probabilistic relaxation rules which are locally like th
generalized site-bond directed percolation~see below!, the
system exhibits emergent spatial structure, as discusse
detail in Ref.@7#. Moreover, the avalanche exponents for t
integrated probability distributions of durationP(T)
;T2(t t21) and size of avalanches,D(s);s2(ts21), are ex-
pressible in terms of the standard directed percolation ex
nents ind5111 dimensions as follows@7#:

t t21[a5~d21!zDP2~b/n i!DP , ~2!

andts5221/t t , and the anisotropy exponentz5zDP . Sub-

FIG. 1. Bottom: Avalanche in 111 stochastic model forp
5p! and L5128. Transport direction is from left to right. Dar
points represent sites at which system performs work, and at
dark points it dissipates energy. Top:~a! Transverse section of th
pile at distancel 596 from the top. Heights are averaged over
3106 runs.~b! Height ~averaged in transferse direction! vs parallel
distance from the top in the stationary state. Dotted line: 1.6l 0.59.
Heights are measured in number of grains andR is given in lattice
sites.
-

w

in

o-

scriptDP refers to directed percolation, andb andn i are the
critical exponents for the order parameter and parallel co
lation length, respectively.

In the present work we extend the study of the model
Ref. @7# in two ways:~1! We study the probability distribu-
tion of the potential energy dissipated in a relaxation ev
~avalanche! due to grains drop from higher to lower position
at the fluctuating sandpile surface. This distribution is uniq
for the dynamic sandpile models with ragged spatial str
ture and has no counterpart in the directed percolation p
cesses. Thus we expect that the exponents characterizin
scaling properties are new.~2! We analyze the behavior o
the system close to the phase transition point in terms o~i!
scaling properties of the survival probability distribution f
p,p! and ~ii ! by determining the time averaged outflo
current ^J(p)&, which behaves as an order parameter. T
outflow current results from avalanches which last long
than the system sizeT>L. The average is taken overexter-
nal time scale, which is measured in number of added gra
The internal current at timeT,L is defined aŝ j (T,p)&
;T2am(T,p), where m(T,p) is the average flux of par
ticles at timeT, andT2a is the probability that an avalanch
survivesT steps. In the steady state outflow current^J(p)&
balances the input current, which is one particle per ti
step, and thus it is equal to 1. Forp,p! the system ceases t
conduct particles, and the outflow current drops to zero
l @j(p) and finite lattice sizeL as

^J~p!&;~dp!bg„L/j~p!…, ~3!

where dp[(p2p!)/p! measures the distance from th
steady state andj(p);(dp)2n i is the parallel correlation
length. The set of critical exponents is determined by
appropriate scaling fits and using the scaling relations
are valid in the present dynamical model~see Secs. IV and
V!.

The organization of the paper is as follows: In Sec. II t
phase diagram of the system is calculated numerically
finite lattice sizeL. In Sec. III we study scaling properties o
the distribution of energy dissipated in avalanches. In S
IV we present detailed numerical analysis of the phase tr
sition. A summary of the universal scaling exponents and
discussion of the results is given in Sec. V.

II. PHASE DIAGRAM

Due to probabilistic dynamic rules the avalanches in t
model show a fractal structure; an example is shown in F
1 ~bottom!. In the limit p51 this model reduces to the de
terministic directed model with compact avalanches, wh
has been introduced and solved exactly in Ref.@10#.

As discussed in detail in Ref.@7#, for p!<p,1 the relax-
ation rulesat each siteof the system may be visualized a
the rules of a Domany-Kinzel cellular automaton@11# of
generalized site-bond directed percolation~DP!, with prob-
abilities P1 and P2 that a toppling occurs if one or two
particles, respectively, drop at that site. According to Eq.~1!,
we haveP1[pr, wherer is the probability that the site ha
heighth>1, andP2[p by definition. In contrast to DP, in
the present dynamic model the state is being systematic
built up after each avalanche, and the probabilityr was

ht
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1454 PRE 59BOSILJKA TADIĆ
found to vary with the distancel from the top of pile as@7#
r(l ,p)5r!(p)2A(p)l 2x. Here x51/n i

DP ~see inset to
Fig. 2! is the inverse parallel correlation length exponent
the directed percolation@12#. In the above formular!(p) are
the values ofr(l ,p) reached atl →`. Notice that the dis-
tancel from the top of the pile is equivalent to the duratio
T of avalanches. In Fig. 2 we show time-averaged^r!(p)&
vs p obtained numerically and averaged over lower third
the lattice withL5100, for various values ofp. Two types of
initial conditions are used:~a! full lattice ~all lattice sites are
occupied by at least one particle!, and ~b! half-full lattice
~half of the sites that are selected randomly have zero hei
and the rest of sites are occupied!. In both cases, for the
initial set of probabilities (p,r!) in the region to the right of
p! the system self-organizes~after some transient time! to
sitting close to the DP critical line~cf. Fig. 2!. Left of the
line p5p! different initial conditions lead to separate fin
states. We used 83106 time steps for each point. Notice tha
due to finite size of the latticêr!(p!)& is still somewhat
smaller than 1~indicated by dotted line in Fig. 2!, and that a
dynamical hysteresis occurs in the region 0.5<p,p! @13#.
At p! an instability, building up of heights, starts at th
lower boundary of the pile and proliferates inside, reach
the first row for probability of toppling exactlyp51/2. Apart
from the finite-size effects, the phase diagram in Fig. 2 is
agreement with general theoretical considerations given
Ref. @7#.

III. DISSIPATED ENERGY DISTRIBUTION

Due to the probabilistic character of the dynamic rela
ation rules in Eq.~1! for p,1 and the conservation of pa
ticles in the interior of the pile, our dynamic model exhib
the emergent spatial structure@7#, which is characterized by
rough surfaceh( i , j ) embeded in three-dimensional spac

FIG. 2. Phase diagram in the space of probabilities (p,r!) ob-
tained numerically for a lattice withL5100. Open symbols corre
spond to initial conditions along the line (p,1), and filled symbols
to initial conditions along the line (p,1/2). Dotted line indicates
value^r!& at p!. Inset:r(l ) vs l for ~top to bottom! p5p!, 0.8,
and 0.9, with fit lines described in the text.
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Therefore, mass transport in the preferred direction ta
place along a rough surface. Conditions for the potential
ergy dissipation are fulfilled when the height differen
] ih6[h( i , j )2h( i 11,j 6)21 along the direction of trans
port is positive. More precisely, since relaxation at a s
involves two particles, the energy is dissipated at that
when the sumE( i , j )[] ih21] ih121.0.

Two comments are in order at this point:~1! Although the
driving force of the grain transport in this model isnot a
gradient of the potential energy, as discussed in the Introd
tion, we believe that cumulative potential energy dissipa
in an avalanche is an interesting quantity that is directly
lated to temporal fluctuations of the emergent structure in
real space. We concentrate on the properties of the en
distribution near the phase transition pointp5p!, where the
surface exhibits dramatic fluctuations, and only briefly d
cuss scaling behavior forp.p!. ~2! We distinguish between
energy dissipated at a fixed site, through which various a
lanches run, and the energy dissipated at different point
the whole avalanche. Here we study scaling properties of
latter quantity. Notice that the conditionE( i , j ).0 is ful-
filled at a set of pointsS, which is a random subset~see Fig.
1! of the avalanche sizes @14#. The total energy dissipated i
an avalanche is thenE5(SE( i , j ).

The probability distribution of the dissipated energyP(E)
is found to obey a power-law behavior with the exponenttE
for p!<p,1 and the following scaling form is satisfied:

P~E,L !5L ~tE21!DEP~EL2DE!, ~4!

with (tE21)DE5t t21, where t t21[a is the survival
probability distribution exponent. In Fig. 3 we show the i
tegrated distribution of dissipated energies forp5p! and for
four different values of lattice sizeL. The slope gives the
exponenttE2150.24, and the finite-size scaling plot a
cording to Eq.~4!, which is shown in the inset to Fig. 3, i
obtained witha50.45 andDE51.84. In contrast to the sur

FIG. 3. Double logarithmic plot of the integrated distribution
dissipated energiesD(E,L) vs E for p5p! and for L512,24,48,
and 96~left to right!. Inset: Scaling plot according to Eq.~4! with
a50.45 andDE51.84.
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PRE 59 1455SCALE-FREE ENERGY DISSIPATION AND DYNAMIC . . .
vival probability distribution and size distribution of ava
lanches, the distribution of dissipated energy cannot be
fined in the directed percolation processes, and thus
exponentstE andDE are new and are not directly related
the DP exponents. Moreover, we find that the exponentstE
andDE arep dependent, for instance, forp50.8 we obtain
tE51.27 andDE51.66, andtE51.29 andDE51.55 for p
50.9. However, a combination of these exponents can
related to the survival probability exponenta via the scaling
relation (tE21)DE5a, which holds in the SOC states
wherea is the universal exponent expressible in terms of
exponents via Eq.~2!. This scaling relation is satisfied withi
numerical error bars~estimated as60.02) for all values ofp
in the regionp!<p,1. In the limit p51 the critical state is
exactly known@10# and consists only of the heightsh51
andh50. Consequently, dissipated energy is bounded to
integer values, and the distributionP(E) has the same sca
ing exponents as the size of avalanches distribution.

For p!<p,1 emergent spatial structure appears due
both stochastic dynamics and the conservation of numbe
particles in the interior of the pile@7#. At the edge of the
scaling region (p5p!) we find that the average height~av-
eraged in the transverse direction! increases with the distanc
l from the top row aŝ h(l )&'al b, with b50.5960.02
@cf. Fig. 1 ~top!#. Therefore, for largel there is a finite
probability of large heights; however, at the same distancl
some site have height zero, since the system is in the sta
ary critical state~in the opposite the avalanche would prop
gate as a directed percolation cluster, which violates stat
arity condition!. Thus, ] ih also increases withl and
becomes unbounded forl →`. Thus, the energy cutoff ha
additional nontriviall dependence, which is not containe
in the l dependence of the avalanche size cutoff, indicat
that the sandpile surface is a fractal atp5p!. In the interior
of the scaling region (p!,p,1), the average height re
mains finite and not a function ofl ; however, height distri-
bution does strongly depend onp. We find that the width of
the height distributionw(p) increases smoothly with de
creasingp from w51 at p51 to a fast diverging function a
p→p!. Neighboring sites are weakly correlated since
dynamics is governed by the critical height rule only, a
thus dissipated energy at a siteE( i , j ) also depends onp. We
checked by direct calculation that the distribution of dis
pated energy at a fixed site in the interior of the pi
P(Esite), taken over 23106 avalanches exhibits strongp
dependence. It is an exponential function of widthwes,
which is increasing smoothly with decreasingp and becomes
nearly power law atp5p!. We believe that thep depen-
dence of the height distribution is the origin of the observ
nonuniversality of the energy exponents. On the other ha
the size and duration of avalanches are governed by the p
abilitiesp andr!, which sit always at the DK critical line in
Fig. 2. It should be noticed that the probabilityr(l ) does not
depend on particular values of heightsh.1, and thus the
avalanche exponents remain universal@cf. Eq. ~2!#. We find
that the distribution of mechanical work done by the syst
exhibits a curvature and not a power-law behavior.

IV. DYNAMIC PHASE TRANSITION

In the region belowp! the system ceases to conduct a
starts accumulating particles. As a consequence the cri
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steady state is lost~see detailed discussion in Ref.@7#! and
the probability distributions exhibit exponential cutoffs wi
finite correlation length, depending on the distance fromp!.
In Fig. 4 we show the survival probability distributio
P(T,p) for few values ofp,p! and L5200. In general, a
distributionP(X,p,L) satisfies the following scaling form in
the subcritical region:

P~X,p,L !5~dp!DXn itXP„X~dp!DXn i,XL2DX
…, ~5!

wheredp[(p!2p)/p! and X stand forT, s, or E, respec-
tively, andDX is the corresponding fractal dimension. In th
case of distribution of durationsP(T,p,L) we haveDT[z
the dynamic exponent, andz51 in the present model. There
fore there are no finite-size effects in the survival probabi
distribution, which makes it particularly suitable for the su
critical scaling analysis. In the case of size and energy
tributions, one is restricted to values ofp andL such that the
condition (dp)2n i/L!1 is satisfied. In the inset to Fig. 4 th
scaling collapse according to Eq.~5! of the survival probabil-
ity distribution is shown, where we have useda50.45 and
zn i51.22.

Another way to study the dynamic phase transition is
direct measurements of the order parameter, i.e., the ti
averaged outflow current^J(p)&. In the critical steady state
^J(p)&51, thus balancing the average input current. Bel
the transition point this balance is lost. The outflow curre
decreases reaching zero at some lower value ofp, which
depends on the system sizeL @see Fig. 5~bottom!#. For dif-
ferent lattice sizes we expect the following scaling form
hold:

^J~p,L !&5L2b/n iJ„L1/n i~p2p!!/p!
…. ~6!

This scaling form follows from general scaling properties
the internal current for T,L, that reads ^ j (T,p,L)&
;LlJj „L1/n i(p2p!)/p!,L2zT…. By choosing L;

FIG. 4. Double logarithmic plot of the integrated distribution
durationsP(T,p) vs T for L5200, andp50.695, 0.69, 0.68, 0.67
and 0.66~top to bottom! in the subcritical region. Inset: Scaling plo
according to Eq.~5! with dp[(p!2p)/p! and exponentsa
50.45 andzn i51.22.
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1456 PRE 59BOSILJKA TADIĆ
(p/p!21)2ni[j and having defined the exponentb in Eq.
~3!, we find that the anomalous dimensionlJ52b/n i .
Therefore^ j (T,p,L)&5L2b/n iG„L1/n i(p2p!)/p!,L2zT…. In
the stationary state forp>p!, correlation lengthj→` and
the first argument inG can be neglected. ForT!Lz we ex-
pect that the scaling functionG behaves as a power, i.e
^ j (T,p,L)&;const3T2aLza2b/n i, which should be inde-
pendent onL, thus leading tob/n i5za. For the outflow
current, however, we haveT>L and the second argument o
G can be neglected. Then forp,p! one gets expression~6!.
Taking L1/n i;(p2p!)/p! leads to Eq.~3!.

The scaling plot according to Eq.~6! is shown in Fig. 5
~top!, where we haveb/n i50.45 and 1/n i50.83. Together
with the above results and observing the error bars foa
from @7#, we estimate the exponents asn i51.2260.02 and
b50.5660.02.

Notice that the above values of the exponentsn i and b
are close to the values 1.2860.06 and 0.5860.06, respec-
tively, obtained by Monte Carlo simulations ford53 dimen-
sional directed percolation in Ref.@15#. The reason for this
similarity lies in the altered character of the dynamics of o
model below the transition. Namely, the probabilityr! of
having heighth>1 reaches unity~in the limit of largeL) at
p!. The consequences of this are twofold:~i! the threshold
characterof the dynamics is lost forp,p!, i.e., each site in
the lattice satisfies the threshold conditionh>hc52 when a
single particle drops on that site;~ii ! since r51 we have

FIG. 5. Average outflow current̂J(p)& vs p for various lattice
sizes ~bottom!. Finite-size scaling plot according to Eq.~6! with
b/n i50.45 and 1/n i50.83 ~top!.
r

P15P25p, thus the system spreads the perturbation in
(Ri ,R') plane with the probabilityp and builds up heights
with probability q512p. Therefore, for 0.5,p,p! we
have a dynamic model in which an avalanche propaga
effectively as a cluster in a three-dimensional directed p
colation with finite widthsj i ,j' in the plane, and percolat
ing in the vertical direction. However, there are considera
differences between these processes and conventional t
dimensional DP, leading to a generally different set of exp
nents, as discussed below. An added particle moves a
rough surfaceh(Ri ,R'), which fluctuates inside the corre
lated region (j i ,j'). The internal time scale become
bounded by finitej i , and the system percolates fort→`,
where t is now the external time scale~measured by the
number of added particles!. Flights of particles along the
rough surface are proportional to local height gradients] ih,
which are usually larger than 1, in contrast to contact per
lation processes. However, the average height of the pile^h&
grows exactly by one unit with each added particle as a c
sequence of the conservation of number of particles.

V. DISCUSSION AND CONCLUSIONS

The dynamic model with stochastic relaxation rules of E
~1! exhibits the universal self-organized criticality for th
range of toppling probabilitiesp<p!,1, and the dynamic
phase transition atp5p!. As discussed in detail in Ref.@7#,
the avalanche exponentsa for survival probability,t[ts
21 for integrated cluster size distribution, andz for the av-
erage transverse extent of clusters, are expressible in ter
standard directed percolation exponents in all dimensions
Eq. ~2!. Here we have shown that the dissipated energy
tribution, which is peculiar to the dynamic model and has
analogue in the directed percolation processes, is descr
by a new exponenttE and corresponding fractal dimensio
DE . These exponents appear to bep dependent, however
their product is related to the universal survival probabil
exponent due to scaling relation (tE21)DE5a. Power-law
behavior of the distributionD(E) at p5p! indicates that the
sandpile surfaceh( i , j ) is a fractal. We estimate the rough
ness exponentx by measuring the time averaged height
transverse dimension of the pilêh(Rtr)&;Rtr

x at various
distancesl from the first row @see Fig. 1~top!#. By box
counting we find that the contour curve of the perpendicu
section through the pile forp5p! has fractal dimensiondf
51.4460.045, leading tox5df2150.4460.04. Error bars
are estimated from several separate measurements at d
ent sections. The roughness exponent appears to be la
than the one measured in the rice pile model with criti
slope rules, where it was found thatxRP50.23@3,16#. In the
steady state the height fluctuates around the average v
^h&51966, increasing by one unit at boundary sites of
avalanche and decreasing by one unit at transport sites
one preceding active neighbor. The flamelike profile in Fig
~top! indicates individual site fluctuations, in agreement w
the critical height rules in our model. The closeness of
exponentsx'a indicates that the number of sites at whic
the pile grows is on the average equal to the number
transport sites, i.e., the avalanches have almost no com
parts ~cf. Fig. 1!. Below the transition point the pile grow
indefinitely for t→`, as discussed in Sec. IV.
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The dynamic phase transition atp! is characterized by the
exponents of the order parameterb, and the parallel corre
lation lengthn i , the numerical values of which appear to
very close to those of the directed percolation ind11 di-
mensions. However, the exponentg for the order-paramete
fluctuations and the exponentk, which describes the averag
cluster growth at timeT asm(T);Tk, appear to be differen
from d53 DP exponents~see Ref.@15#!. A complete set of
exponents is given in Table I.

With regard to the exponents in Table I we would like
point out the following:~1! In the critical steadystate the
average cluster growth balances the average input of
ticles, i.e.,m(T);1, leading tok50. The scaling relation
k5g/n i215D i212a holds, thus we haveg5n i ; ~2! At
the dynamic phase transition the hyperscaling relation~HS!
2b1g5@11(d21)z#n i appears to be violated@17,18#, in
contrast to the thermodynamic DP phase transition~cf. Table
I!. The avalanche exponents are determined in Ref.@7#. The
exponents for DP ind52 are taken from Ref.@9# and the
corresponding avalanche exponentstDP andDDP are calcu-
lated using the scaling relations.~Notice that due to the pres
ence of anisotropy, at least three exponents should be kn
in order to determine completely the universality class.! The
following scaling relations are valid both in DP and in d
namic models: b/n i5t t21[a;b/(b1g)5ts21[t;z
5n' /n i ; and D in i5b1g. The hyperscaling violation ex
ponent V is defined via b1g5@11(d21)z2b/n i
1V#n i , which together with the above equations leads
V5D i211a2(d21)z. HereD i is the fractal dimension
of the size of relaxation clusters measured with respect to
length parallel to the transport direction. Using the fact t
D i511a in the dynamic model, we may writeV52a
2(d21)z.

In the directed dynamic processes it is useful to defi

TABLE I. Critical exponents in stochastic directed model~PH!
and in directed percolation~DP! in d52 dimensions. Also shown
are exact exponents inp51 limit ~DR!.

M-E a t D i z k b n i g V

PH 0.46 0.31 1.46 0.62 0 0.56 1.22 1.22 0
DR 1/2 1/3 3/2 1/2 0 - - - 1/2
DP 0.159 0.108 1.472 0.634 0.314 0.276 1.734 2.278
a

e
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another exponentb8, such that the generalized hyperscali
relation @18–20#

a~11b8/b!1k5~d21!z, ~7!

is satisfied. Hereb8 is related to the ultimate survival prob
ability ~the survival probability of a cluster grown from
fixed seed!, whereasb governs the usual order-parameter
stationary density of active sites. Recently, exponential
equalityb8Þb was found in models with multiple absorbin
configurations@19# and in branching annihilating random
walks with even parity@20#. Our results in this paper sugge
that in the self-organized dynamic critical states in direc
modelsk[0 andbÞb8 is always satisfied. We have

V5
b

n i
2

b8

n i
.0. ~8!

Using the above scaling relations and Eq.~2! we find that
b8/n i5aDP50.159 ~cf. Table I!. Therefore, the HS viola-
tion exponentV is given by the difference between the su
vival probability exponents in the dynamic model and t
underlying directed percolation asV5a2aDP , which turns
to be equal to the cluster growth exponent of DP, i.e.,V
5kDP . One can also define a new configuration expon
g8 via g8/n i[g/n i1V, such that the relation 2b81g8
5@11(d21)z#n i is satisfied. By inserting the above ex
pression forV into g8, we haveg8/n i511kDP51.314.
Using value ofn i from Table I we findg851.58660.026,
andb850.19560.012. The origin of the difference betwee
a andaDP lies in the dynamic conservation law, which lea
to the emergent spatial structure and dependence of
branching probabilityr(l ) on distancel , as discussed in
Ref. @7#. Our present results suggest that the dynamic c
servation law is also responsible for the new universa
class of the dynamic phase transition at the edge of the c
cal region.
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system to a slowly increasing external ‘‘field’’ by one un
~particle! per time step.

@14# Set of sitesS is a fractal with the same scaling properties
avalanche size.

@15# P. Grassberger, J. Phys. A22, 3673~1993!.
@16# M. Paczuski and S. Boettcher, Phys. Rev. Lett.77, 111~1996!.
@17# Hyperscaling violation has been discussed in relation to

phase transition in spin systems with quenched random fie

It implies an additional exponentg̃, which governs the discon
nected susceptibility, is introduced in order to determine co
e
s.

-

pletely the universality class of the transition@accurate values
of the exponents are determined in M. E. J. Newman and G
Barkema, Phys. Rev. E53, 393 ~1996!. See also discussion in
Th. Jolicoeur and J. C. Le Guillou, e-print cond-mat/970625#.

@18# Violation of hyperscaling in DK cellular automaton was r
cently studied by R. Dickman and A. Yu. Tretyakov, e-pri
cond-mat/9504050.

@19# J. F. F. Mendez and R. Dickman, J. Phys. A27, 3018~1994!.
@20# K. B. Lauritsen, P. Fro¨jdh, and M. Howard, e-print

cond-mat/9808335.


