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Scale-free energy dissipation and dynamic phase transition in stochastic sandpiles
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We study numerically scaling properties of the distribution of cumulative energy dissipated in an avalanche
and the dynamic phase transition in a stochastic directed cellular autofBatdadicand D. Dhar, Phys. Rev.
Lett. 79, 1519(1997] in d=1+1 dimensions. In the critical steady state occurring for the probability of
toppling p=p*=0.705 48, the dissipated energy distribution exhibits scaling behavior with new scaling expo-
nents7g andDg for slope and cut-off energy, respectively, indicating that the sandpile surface is a fractal. In
contrast to avalanche exponents, the energy exponents appearmtddpendent in the regiop*<p<1;
however, the product7e—1)Dg remains universal. We estimate the roughness exponent of the transverse
section of the pile ag=0.44+0.04. Critical exponents characterizing the dynamic phase transitiph ate
obtained by direct simulation and scaling analysis of the survival probability distribution and the average
outflow current. The transition belongs to a new universality class with the critical exponents=1.22
+0.028=0.56+0.02 andv, =0.761*+0.029, with apparent violation of hyperscaling. Generalized hyperscal-
ing relation leads t@B+ B'=(d—1)v, , where3’=0.195+0.012 is the exponent governed by the ultimate
survival probability.[S1063-651X99)02102-9

PACS numbd(s): 05.45—a, 05.60—k

. INTRODUCTION are if h(i,j)=h,=2 thenwith the probability pthe relax-
ation occurs as follows:
Open driven systems exhibiting self-organized critical
(SOQ states[1] are usually modeled by sandpile-type au- h(i,j)—h(i,j))—2;h(i+1j)—h(i+1j)+1. (1
tomata, in which sand grains are added slowly to the system
and its evolution is monitored in terms of collective sand-Hereh(i,j) is the dynamic variable, i.e., the heigimumber
slides (avalanches With additional complexity due to sto- of particles at site §,j), and (+1,.) are neighboring
chastic character of the relaxation ru[@s-5], stochastic cel- downstream sites on a two-dimensional square lattice ori-
lular automata models have proven useful in understandingnted downwards. Due to directed mass transport the dynam-
certain aspects of granular floj8—5] in realistic granular ics of this model is anisotropic leading to self-affine relax-
materials and in stochastic biological procesigs On the ation clusters ird=2 (see Fig. 1 Thus the model can also
other hand, sandpile automata models are interesting frome viewed as directional lines id=1+1 dimensions, in
the theoretical point of view since both role of the dynamicwhich the instability can propagate in one spatial dimension
conservation lawconservation of the number of grajrend  back and forth, whereas the temporal dimension is strictly
emergent spatial structures can be easily monitored. directed. The system is driven by adding particles from the
Recently a model with probabilistic toppling and directed outside, one at a time at a random position along the first
mass flow has been propodéd, in which the probability of  (top) row. Only sites that are connected to toppled sites at the
toppling p represents a control parameter originating eitherprevious time step are considered as candidates for toppling.
from random variations of sticking properties betweenPerturbation can then be transferred from an adtioppled
grains, or from stochastic external conditiofvgetting and  site to two forward neighbors. Periodic transverse boundaries
drying properties Another realization is related to stochastic are assumed and all candidate sites are updated in parallel.
processes in biological systems such as random dispersion The probabilistic character of the relaxation rules produces a
particles, which are added from the outside and evacuatetgged structure of height$d transverse section through the
from the system only when its response lasts longer than pile is shown in Fig. 1(top).] Two top particles from the
fixed time Ty, measured on the internal time scale of thesurfaceh(i,j) are taken away from the system when the
process. Particles are transferred among communicating celigtive site is on the lower boundary, i.eésL.
according to probabilistic rules, however, for response times |t should be stressed that according to the above relax-
shorter thanT, they are held inside the system. Therefore,ation rules transport of grains is independent of the relative
each cell contains a certain number of particles, which variedeights of neighboring sites. Therefore, it may occur that at
with time. The probabilistic character of the particle transfersome sites height difference in the direction of transport is
between connected cells can be attributed to mechanismgative, and thus the system performs work in order to
which depend on general condition of the system. We conmaintain the transport. A nice example of this dynamic rules
sider the cas&,=L, whereL is the linear system size. was found recently in biological transport processes that are
The relaxation rules of the model d=1+1 dimensions mediated by so called molecular mot¢8. These are pro-
tein molecules that can use excess energy from the chemical
reactions in the fueladenosine triphosphatand perform
*Electronic address: Bosilika. Tadic@ijs.si mechanical work.

1063-651X/99/52)/14527)/$15.00 PRE 59 1452 ©1999 The American Physical Society



PRE 59 SCALE-FREE ENERGY DISSIPATION AND DYNAMIC ... 1453

30 scriptD P refers to directed percolation, agdand v are the

| . critical exponents for the order parameter and parallel corre-

b oy lation length, respectively.

20 - | In the present work we extend the study of the model of

Ref.[7] in two ways: (1) We study the probability distribu-

tion of the potential energy dissipated in a relaxation event

10 | | (avalanchgdue to grains drop from higher to lower positions
at the fluctuating sandpile surface. This distribution is unique

for the dynamic sandpile models with ragged spatial struc-

<h(R)>

o i ‘ ‘ ‘ ‘ | ture and has no counterpart in the directed percolation pro-

64 i cesses. Thus we expect that the exponents characterizing its
a scaling properties are new2) We analyze the behavior of

48 - 8 the system close to the phase transition point in term@)of

scaling properties of the survival probability distribution for
p<p* and (i) by determining the time averaged outflow
current{J(p)), which behaves as an order parameter. The
outflow current results from avalanches which last longer
than the system siZ€=L. The average is taken ovekter-

nal time scale, which is measured in number of added grains.
0 16 32 48 64 8 9 112 128 The internal current at tim@<L is defined as(j(T,p))

R ~T7*m(T,p), wherem(T,p) is the average flux of par-
ticles at timeT, andT ™~ ¢ is the probability that an avalanche
survivesT steps. In the steady state outflow currédtp))
balances the input current, which is one particle per time
step, and thus it is equal to 1. Fer p* the system ceases to
conduct particles, and the outflow current drops to zero for

/> &(p) and finite lattice sizé as
e (3(p))~(3m)PQ(LIE(p)), €

where sp=(p—p*)/p* measures the distance from the
steady state ang(p)~(dp) "l is the parallel correlation
length. The set of critical exponents is determined by the

FIG. 1. Bottom: Avalanche in 41 stochastic model fop appropriate scaling fits and using the scaling relations that
—p* and L=128. Transport direction is from left to right. Dark &€ valid in the present dynamical modsee Secs. IV and

points represent sites at which system performs work, and at Iighv)- o )
dark points it dissipates energy. Td@ Transverse section of the ~ 1Nhe organization of the paper is as follows: In Sec. Il the
pile at distance”=96 from the top. Heights are averaged over 5 phase diagram of the system is calculated numerically for
% 10P runs.(b) Height (averaged in transferse directiovs parallel ~ finite lattice sizel. In Sec. Ill we study scaling properties of
distance from the top in the stationary state. Dotted linez4%8 the distribution of energy dissipated in avalanches. In Sec.
Heights are measured in number of grains &id given in lattice 1V we present detailed numerical analysis of the phase tran-
sites. sition. A summary of the universal scaling exponents and the
discussion of the results is given in Sec. V.

It has been understoo¥] that the automaton exhibits
self-organized criticality for the range of values of the con-
trol parametemp=p*, wherep*=p>°"=0.70548%(5) is
the percolation threshold for the site directed percolaftin Due to probabilistic dynamic rules the avalanches in this
on the square lattice. Due to the dynamic conservation lawnodel show a fractal structure; an example is shown in Fig.
(conserved number of grains in the interior of the pé@d 1 (bottom). In the limit p=1 this model reduces to the de-
the probabilistic relaxation rules which are locally like the terministic directed model with compact avalanches, which
generalized site-bond directed percolati@®e belowy, the has been introduced and solved exactly in R&.
system exhibits emergent spatial structure, as discussed in As discussed in detail in Reff7], for p*<p<1 the relax-
detail in Ref.[7]. Moreover, the avalanche exponents for theation rulesat each siteof the system may be visualized as
integrated probability distributions of duratiorP(T) the rules of a Domany-Kinzel cellular automatfhl] of
~T~(n=1) and size of avalancheB(s)~s (s"1), are ex- generalized site-bond directed percolati@®P), with prob-
pressible in terms of the standard directed percolation expaabilities P, and P, that a toppling occurs if one or two

Il. PHASE DIAGRAM

nents ind=1+1 dimensions as followf7]: particles, respectively, drop at that site. According to @g.
we haveP;=pp, wherep is the probability that the site has
n—1=a=(d—=1){pp—(B/V))pp, 2 heighth=1, andP,=p by definition. In contrast to DP, in

the present dynamic model the state is being systematically
andrs=2— 1/7;, and the anisotropy exponefi= {pp. Sub-  built up after each avalanche, and the probabilitywas
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FIG. 2. Phase diagram in the space of probabilitiesp{) ob- FIG. 3. Double logarithmic plot of the integrated distribution of

tained numerically for a lattice with=100. Open symbols corre- dissipated energieB(E,L) vs E for p=p* and forL=12,24,48,

spond to initial conditions along the ling@ (1), and filled symbols ~and 96(left to right). Inset: Scaling plot according to E() with

to initial conditions along the linef1/2). Dotted line indicates «=0.45 andDg=1.84.

value({p*) atp*. Inset:p(/) vs / for (top to bottom p=p*, 0.8,

and 0.9, with fit lines described in the text. Therefore, mass transport in the preferred direction takes
place along a rough surface. Conditions for the potential en-

found to vary with the distancg from the top of pile a§7]  ergy disgipation. are fulfiled when the. height difference

p(7.p)=p*(p)—A(p)/*. Here le/,,l?P (see inset to dh-=h(i,j)—h(i+1j.)—1 along the direction of trans-

Fig. 2 is the inverse parallel correlation length exponent ofPOrt is positive. More precisely, since relaxation at a site

the directed percolatiofi2]. In the above formula*(p) are  involves two particles, the energy is dissipated at that site

the values ofp(/,p) reached a¥’—c. Notice that the dis- When the sunk(i,j)=dh_+dh, —1>0.

tance/ from the top of the pile is equivalent to the duration _ TW0 comments are in order at this poift) Although the

T of avalanches. In Fig. 2 we show time-averaged(p)) driving force of the grain transport in this model mot a

vs p obtained numerically and averaged over lower third ofgradient of the potential energy, as discussed in the Introduc-

the lattice withL = 100, for various values gf. Two types of ~ tion, we believe that cumulative potential energy dissipated

initial conditions are useda) full lattice (all lattice sites are N @n avalanche is an interesting quantity that is directly re-

occupied by at least one partigleand (b) half-full lattice  lated to temporal fluctuations of the emergent structure in the

(half of the sites that are selected randomly have zero height§@l Space. We concentrate on the properties of the energy

and the rest of sites are occupiedh both cases, for the distribution near the phase transition point p*, where the

initial set of probabilities p,p*) in the region to the right of Surface exhibits dramatic flu*ctuatlons, and only briefly dis-

p* the system self-organize@fter some transient timgo ~ CuSS scaling behavior fa>p*. (2) We distinguish between

sitting closeto the DP critical line(cf. Fig. 2). Left of the ~ €nergy dissipated at a fixed site, through which various ava-

line p=p* different initial conditions lead to separate final lanches run, and the energy dissipated at different points in

states. We used>810P time steps for each point. Notice that the whole avalanche. Here we study scaling properties of the

due to finite size of the latticép*(p*)) is still somewhat latter quantity. Notice that the conditioB(i,j)>0 is ful-

smaller than Yindicated by dotted line in Fig.)2and that a filled at a set of pointsS, which is a random subsesee Fig.

dynamical hysteresis occurs in the region<0<p* [13]. 1) of the avalanche size[14]. .T.he total energy dissipated in

At p* an instability, building up of heights, starts at the @1 @valanche is theB=>E(i,j).

lower boundary of the pile and proliferates inside, reaching | he probability distribution of the dissipated eneig{E)

the first row for probability of toppling exactly=1/2. Apart 'S fou*nd to obey a power-law behavior with the exponant

from the finite-size effects, the phase diagram in Fig. 2 is ifof P"<p<1 and the following scaling form is satisfied:

agreement with general theoretical considerations given in

Ref. [7]. P(E,L)=L{e"YPep(EL"PE), 4

IIl. DISSIPATED ENERGY DISTRIBUTION with (7e—1)De=7—1, where n—1=a is the survival
probability distribution exponent. In Fig. 3 we show the in-

Due to the probabilistic character of the dynamic relax-tegrated distribution of dissipated energiesferp* and for
ation rules in Eq(1) for p<<1 and the conservation of par- four different values of lattice size. The slope gives the
ticles in the interior of the pile, our dynamic model exhibits exponentre.—1=0.24, and the finite-size scaling plot ac-
the emergent spatial structuré], which is characterized by cording to Eq.(4), which is shown in the inset to Fig. 3, is
rough surfaceh(i,j) embeded in three-dimensional space.obtained witha=0.45 andDg=1.84. In contrast to the sur-



PRE 59 SCALE-FREE ENERGY DISSIPATION AND DYNAMIC ... 1455

vival probability distribution and size distribution of ava- 0
lanches, the distribution of dissipated energy cannot be de-
fined in the directed percolation processes, and thus the
exponentsrg andDg are new and are not directly related to -
the DP exponents. Moreover, we find that the exponegats
and D¢ arep dependent, for instance, fgr=0.8 we obtain
me=1.27 andDg=1.66, andrz=1.29 andDg=1.55 forp 2
=0.9. However, a combination of these exponents can be
related to the survival probability exponemtvia the scaling
relation (rg—1)Dg=«, which holds in the SOC states,
wherea is the universal exponent expressible in terms of DP
exponents via Eq2). This scaling relation is satisfied within
numerical error bargestimated as-0.02) for all values op
in the regionp*<p<1. In the limitp=1 the critical state is
exactly known[10] and consists only of the heights=1 5 g
andh=0. Consequently, dissipated energy is bounded to fife @p/IT
integer values, and the distributid®E) has the same scal-
ing exponents as the size of avalanches distribution. -, : '
For p*<p<1 emergent spatial structure appears due to InT
both stochastic dynamics and the conservation of nhumber of
particles in the interior of the pil§7]. At the edge of the
scaling region p=p*) we find that the average heigfav-
eraged in the transverse directioncreases with the distance
/ from the top row agh(/))~as®, with b=0.59+0.02
[cf. Fig. 1 (top)]. Therefore, for large”” there is a finite
probability of large heights; however, at the same distafice gieady state is lodsee detailed discussion in R§F]) and
some site have height zero, since the system is in the statiogse propanility distributions exhibit exponential cutoffs with
ary critical statgin the opposite the avalanche would propa-finite correlation length, depending on the distance frgm
gate as a directed percolation cluster, which violates stationy, Fig. 4 we show the survival probability distribution
arity condition. Thus, gh also increases withy” and P(T,p) for few values ofp<p* andL=200. In general, a

becomes unbounded fof—c. Thus, the energy cutoff has istributionP(X,p,L) satisfies the following scaling form in
additional nontrivial”~ dependence, which is not contained ihe subcritical region:

in the 7/ dependence of the avalanche size cutoff, indicating

that the sandpile surface is a fractalpat p*. In the interior P(X,p,L)=(8p)Px"I™xP(X(8p)Px"I,X L~ Px), (5)

of the scaling region f*<p<1), the average height re-

mains finite and not a function of; however, height distri- Where §p=(p*—p)/p* and X stand forT, s, or E, respec-
bution does strongly depend gnWe find that the width of tively, andDy is the corresponding fractal dimension. In the
the height distributionw(p) increases smoothly with de- case of distribution of durationB(T,p,L) we haveD=z
creasingp fromw=1 atp=1 to a fast diverging function at the dynamic exponent, arg=1 in the present model. There-
p—p*. Neighboring sites are weakly correlated since thefore there are no finite-size effects in the survival probability
dynamics is governed by the critical he|ght rule Only, anddistribution, which makes it pal’ticu|al’|y suitable for the sub-
thus dissipated energy at a siéi,j) also depends op. We cr_itical scaling _analysis. In the case of size and energy dis-
checked by direct calculation that the distribution of dissi-tributions, one is restricted to valuespandL such that the
pated energy at a fixed site in the interior of the pi|e,Conqiti0n (§p)7y|‘/|_<l i.S satisfied. In the insgt to Flg 4the
P(Eqi), taken over X 1C° avalanches exhibits strong ~ Scaling collapse according to E®) of the survival probabil-

3}

In P(T,p)

4L

P(T )P

L
0

10

FIG. 4. Double logarithmic plot of the integrated distribution of
durationsP(T,p) vs T for L=200, andp=0.695, 0.69, 0.68, 0.67,
and 0.66(top to bottom in the subcritical region. Inset: Scaling plot
according to Eq.(5) with Sp=(p*—p)/p* and exponentsa
=0.45 andZVH =1.22.

dependence‘ It is an exponentia| function of Wid,t‘gs’ |ty distribution is ShOWn, where we have usead-0.45 and
which is increasing smoothly with decreasimgnd becomes  2v|=1.22. ] o
nearly power law ap=p*. We believe that the depen- Another way to study the dynamic phase transition is by

dence of the height distribution is the origin of the observecdirect measurements of the order parameter, i.e., the time-
nonuniversality of the energy exponents. On the other handiveraged outflow curreqti(p)). In the critical steady state
the size and duration of avalanches are governed by the probJ(P)) =1, thus balancing the average input current. Below
abilitiesp andp*, which sit always at the DK critical line in the transition point this balance is lost. The outflow current
Fig. 2. It should be noticed that the probabilitf/) does not ~ decreases reaching zero at some lower valug,oivhich
depend on particular values of heights-1, and thus the depends on the system siz¢see Fig. S(bottom]. For dif-
avalanche exponents remain univerigl Eq. (2)]. We find ferent lattice sizes we expect the following scaling form to
that the distribution of mechanical work done by the systenold:
exhibits a curvature and not a power-law behavior.

(I(p.L)y=L" T I(p—p*)/p*). (6)
This scaling form follows from general scaling properties of

In the region belowp* the system ceases to conduct andthe internal current for T<L, that reads{(j(T,p,L))
starts accumulating particles. As a consequence the criticat L™} (LYI(p—p*)/p*,L ~?T). By choosing L~

IV. DYNAMIC PHASE TRANSITION
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FIG. 5. Average outflow currert)(p)) vs p for various lattice
sizes (bottom). Finite-size scaling plot according to E¢) with
B/v=0.45 and 1¥=0.83 (top).

(p/p*—1)""=¢ and having defined the exponeftin Eg.
(3), we find that the anomalous dimension=—g/v|.
Therefore(j(T,p,L))=L"A"IGL¥I(p—p*)/p*,L ?T). In
the stationary state fqp=p*, correlation lengthé—o and
the first argument i can be neglected. Far<L* we ex-

pect that the scaling functiog behaves as a power, i.e.,
{(j(T,p,L))~constx T~ Lz A" which should be inde-

pendent onL, thus leading tog/v|=za. For the outflow

current, however, we havE=L and the second argument of

G can be neglected. Then fpr<p* one gets expressia).
Taking LI~ (p—p*)/p* leads to Eq(3).

The scaling plot according to E@6) is shown in Fig. 5
(top), where we haves/v=0.45 and 1#=0.83. Together
with the above results and observing the error barsdfor

from [7], we estimate the exponents as=1.22+0.02 and
B=0.56+0.02.
Notice that the above values of the exponentsand 8

are close to the values 1.28.06 and 0.58 0.06, respec-

tively, obtained by Monte Carlo simulations fde= 3 dimen-

sional directed percolation in Rdfl5]. The reason for this

BOSILIKA TADIC
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P,=P,=p, thus the system spreads the perturbation in the
(Ry,R}) plane with the probabilityp and builds up heights
with probability g=1—p. Therefore, for 0.5 p<p* we
have a dynamic model in which an avalanche propagates
effectively as a cluster in a three-dimensional directed per-
colation with finite widths§,&, in the plane, and percolat-
ing in the vertical direction. However, there are considerable
differences between these processes and conventional three-
dimensional DP, leading to a generally different set of expo-
nents, as discussed below. An added particle moves along
rough surfacen(R,R,), which fluctuates inside the corre-
lated region €,£,). The internal time scale becomes
bounded by finite;, and the system percolates for: o,
wheret is now the external time scalémeasured by the
number of added particlesFlights of particles along the
rough surface are proportional to local height gradients
which are usually larger than 1, in contrast to contact perco-
lation processes. However, the average height of the(pjle
grows exactly by one unit with each added particle as a con-
sequence of the conservation of number of particles.

V. DISCUSSION AND CONCLUSIONS

The dynamic model with stochastic relaxation rules of Eq.
(1) exhibits the universal self-organized criticality for the
range of toppling probabilitiep<p*<1, and the dynamic
phase transition gi=p*. As discussed in detail in Reff7],
the avalanche exponents for survival probability, 7= 7
—1 for integrated cluster size distribution, afidor the av-
erage transverse extent of clusters, are expressible in term of
standard directed percolation exponents in all dimensions via
Eq. (2). Here we have shown that the dissipated energy dis-
tribution, which is peculiar to the dynamic model and has no
analogue in the directed percolation processes, is described
by a new exponentz and corresponding fractal dimension
Dg. These exponents appear to palependent, however,
their product is related to the universal survival probability
exponent due to scaling relatiorgd— 1)Dg= «. Power-law
behavior of the distributio® (E) at p=p* indicates that the
sandpile surfacé(i,j) is a fractal. We estimate the rough-
ness exponeny by measuring the time averaged height vs
transverse dimension of the pild(R;))~RX at various
distances/” from the first row[see Fig. 1(top)]. By box
counting we find that the contour curve of the perpendicular
section through the pile fop=p™* has fractal dimensiod;
=1.44+0.045, leading toy=d;—1=0.44+0.04. Error bars
are estimated from several separate measurements at differ-
ent sections. The roughness exponent appears to be larger
than the one measured in the rice pile model with critical
slope rules, where it was found thegp=0.23[3,16]. In the
steady state the height fluctuates around the average value
(h)=19+6, increasing by one unit at boundary sites of an
avalanche and decreasing by one unit at transport sites with
one preceding active neighbor. The flamelike profile in Fig. 1

similarity lies in the altered character of the dynamics of our(top) indicates individual site fluctuations, in agreement with

model below the transition. Namely, the probabilgy of
having heighth=1 reaches unityin the limit of largeL) at
p*. The consequences of this are twofold: the threshold

characterof the dynamics is lost fop<p*, i.e., each site in

the lattice satisfies the threshold conditier h.=2 when a
single particle drops on that sit@j) since p=1 we have

the critical height rules in our model. The closeness of the
exponentsy~ « indicates that the number of sites at which
the pile grows is on the average equal to the number of
transport sites, i.e., the avalanches have almost no compact
parts (cf. Fig. 1). Below the transition point the pile grows
indefinitely fort—«, as discussed in Sec. IV.
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TABLE |. Critical exponents in stochastic directed modeH) another exponeng’, such that the generalized hyperscaling
and in directed percolatiofDP) in d=2 dimensions. Also shown relation[18—20
are exact exponents m=1 limit (DR).

a(1+B'1B)+k=(d—1)¢, )

is satisfied. Herg8’ is related to the ultimate survival prob-
PH 046 031 146 062 0 056 122 122 0304pjlity (the survival probability of a cluster grown from a
DR 12 13 32 12 0 - - - U2 fixed seedl whereass governs the usual order-parameter—
DP 0.159 0.108 1.472 0.634 0.314 0.276 1.734 2.278 Ogtationary density of active sites. Recently, exponential in-
equality 8’ # B was found in models with multiple absorbing
configurations[19] and in branching annihilating random

The dynarfni(r:] phaze transitionat is gh?]racterizliec: by the "\ alks with even parity20]. Our results in this paper suggest
exponents of the order paramefér and the parallel corre- o in the self-organized dynamic critical states in directed

lation lengthy;, the numerical values of which appear to be . qoisc=0 andB+ B’ is always satisfied. We have
very close to those of the directed percolationdift 1 di- '

mensions. However, the exponentor the order-parameter B B
fluctuations and the exponert which describes the average 0= o V—>0- (8)
cluster growth at tim@ asm(T)~T*, appear to be different I H

from d=3 DP exponentgsee Ref[15]). A complete set of Using the above scaling relations and Eg) we find that
exponents is given in Table I. . B'Ivj=app=0.159 (cf. Table ). Therefore, the HS viola-
With regard to the exponents in Table | we would like to tjon exponent is given by the difference between the sur-
point out the following:(1) In the critical steadystate the vjyal probability exponents in the dynamic model and the
average cluster growth balances the average input of paymderlying directed percolation &= a— app, Which turns
tiCleS, Ie,m(T)"’l, Ieading tok=0. The Scaling relation to be equa| to the cluster growth exponent of DP, @',
k=ylvj=1=D|—1-a holds, thus we havg=y; (2) At =, . One can also define a new configuration exponent
the dynamic phase transition the hyperspaling relaﬂebs) y' via y'lvj=ylvy+Q, such that the relation @ + '
2B+ y=[1+(d—1){]v appears to be violate 7,18, in  =[1+(d—1)]y is satisfied. By inserting the above ex-
contrast to the thermodynamic DP phase transif@nTable pression forQ) into y', we havey'/vj=1+ kpp=1.314.
). The avalanche exponents are determined in Réf.The Using value ofy from Table | we findy’ = 1.586+0.026,
exponents for DP ird=2 are taken from Refl9] and the 445" =0.195+0.012. The origin of the difference between
corresponding avalanche exponengs andDpp are calcu- andagp lies in the dynamic conservation law, which leads
lated using the scaling relationdNotice that due to the pres- g the emergent spatial structure and dependence of the
ence of anisotropy, at least three exponents should be kno"\ﬁ}anching probabilityp(/) on distance/, as discussed in
in order to determine completely the universality cla3%ie  Ref [7]. Our present results suggest that the dynamic con-
following scaling relations are valid both in DP and in dy- servation law is also responsible for the new universality

namic models: B/v=n—1=a;Bl(B+y)=7s—1=7{  (lass of the dynamic phase transition at the edge of the criti-
=v,/v|; andDyy=pB+y. The hyperscaling violation ex- 5| region.

ponent ) is defined via g+y=[1+(d—1){—pB/y,
+Q]y, which together with the above equations leads to
Q=D|—1+a—(d—1){. HereD is the fractal dimension
of the size of relaxation clusters measured with respect to the | thank Deepak Dhar for fruitful discussions and sugges-
length parallel to the transport direction. Using the fact thations that led to the results presented in Fig. 2. | also thank
Dj=1+a in the dynamic model, we may writ€=2a Maya Pazsuski for helpful comments and suggestions. This
—(d—1)¢. work was supported by the Ministry of Science and Technol-
In the directed dynamic processes it is useful to defineogy of the Republic of Slovenia.

M-E « T D I4 K B Y 0% Q

ACKNOWLEDGMENTS

[1] P. Bak, How Nature Works(Springer-Verlag, New York, discussed recently by D. R. Nelson and N. M. Shnerb, e-print
1996, and references therein. cond-mat/9708071.

[2] Y.-C. Zhang, Phys. Rev. Letf3, 470(1989; S. S. Manna, J. [7] B. Tadicand D. Dhar, Phys. Rev. Leff9, 1519(1997.
Phys. A24, L.363(1992; S. Maslov and Y.-C. Zhang, Physica [8] I. Derenyi and T. Vicsek, Phys. Rev. Le#5, 374(1995; F.

A 223 1(1996; A. Ben-Hur and O. Biham, Phys. Rev.533, Juicher and J. Prost, Phys. Rev. Let6, 2618(1999; e-print
R1317(1996. cond-mat/9611204.

[3] K. Christensen, A. Corral, V. Frette, J. Feder, and /Bsdng, [9] I. Jensen, J. Phys. &9, 7013(1996, and references therein.
Phys. Rev. Lett77, 107 (1996. [10] D. Dhar and R. Ramaswamy, Phys. Rev. L88.1659(1989.

[4] S. Libeck, B. Tadigand K. D. Usadel, Phys. Rev. 53, 2182 [11] E. Domany and W. Kinzel, Phys. Rev. Lef3, 311(1984.
(1996. [12] Ford=2 the exponents of directed percolation are known very

[5] B. Tadig Phys. Rev. B57, 4375(1998. accurately; see Ref9].

[6] The origin of stochasticity in biological processes has beer{13] Notice that(p*) can be viewed as a response function of the



1458 BOSILIKA TADIC PRE 59

system to a slowly increasing external “field” by one unit pletely the universality class of the transitipsccurate values

(particle per time step. of the exponents are determined in M. E. J. Newman and G. T.
[14] Set of sitesS is a fractal with the same scaling properties as Barkema, Phys. Rev. B3, 393(1996. See also discussion in

avalanche size. Th. Jolicoeur and J. C. Le Guillou, e-print cond-mat/9706254
[15] P. Grassberger, J. Phys. 22, 3673(1993. [18] Violation of hyperscaling in DK cellular automaton was re-
[16] M. Paczuski and S. Boettcher, Phys. Rev. LER.111(1996. cently studied by R. Dickman and A. Yu. Tretyakov, e-print

[17] Hyperscaling violation has been discussed in relation to the  cond-mat/9504050.
phase transition in spin systems with quenched random field§.19] J. F. F. Mendez and R. Dickman, J. Phys2A 3018(1994.
It implies an additional exponent, which governs the discon- [20] K. B. Lauritsen, P. Fijgh, and M. Howard, e-print
nected susceptibility, is introduced in order to determine com- cond-mat/9808335.



